Curso de Big Data con AWS

Información
Culture Lab
Online
Curso
- Aunque es preferible tener algo de experiencia en el ecosistema AWS, se dedicarán algunas lecciones iniciales para realizar una introducción práctica a la consola de AWS y a los servicios esenciales para comenzar el curso con una base sólida. Ilustrar las bondades de trabajar con servicios gestionados bajo demanda que permiten la puesta en marcha de sistemas Big Data adaptados a nuestras necesidades en cuestión de minutos. - Ofrecer al alumno los conocimientos necesarios para comenzar a trabajar con grande cantidades de datos en el ecosistema AWS: analítica en tiempo real, Map&Reduce, almacenamiento, etc. - Adquirir los conocimientos necesarios para comenzar a trabajar en sistemas Big Data en el cloud de Amazon tanto con sus servicios propietarios (Kinesis, Lambda, DynamoDB, RDS, EMR, Quicksight, etc.) como con otras herramientas open source como Hadoop, Spark, Sqook, Hive, MySQL, entre otras. - Enseñar a los alumnos una visión de alto nivel dentro de AWS focalizado en Big Data con el fin de que adquiera los conocimientos necesarios para por decidir con criterio qué herramienta / solución es la más adecuada ante un problema dado en función de las exigencias de nuestro problema: tamaño de los datos, velocidad de procesado necesaria, volúmenes estimados, etc. - Ilustrar mediante casos de uso reales el funcionamiento de los servicios mencionados así como las integraciones más interesantes entre ellos. A quién va dirigido El curso está dirigido a todo tipo de perfiles que puedan se involucrados en el diseño/mantenimiento de sistemas Big Data en la nube de Amazon. Aunque tiene un carácter técnico predominante, orientado a perfiles como desarrolladores, DBA, administradores de sistemas, personal científico de datos, etc. el curso puede ser de interés para consultores y analistas de negocio. Requisitos Aunque no es imprescindible, es recomendable conocer alguno de los lenguajes más empleados en ecosistemas Big Data: Java, Scala, Python al igual que tener nociones básicas de SQL. emos ejemplos en Java (mayormente), Scala, Python y SQL. Igualmente, se realizarán demostraciones empleando la línea de comandos (siempre sobre Linux) por lo que sería recomendable tener conocimientos previos básicos de shell script Temario completo de este curso Tema 1: Big Data y Cloud Computing Lección 1 – Por qué Big Data Lección 2 – Por qué Cloud Computing Lección 3 – Por qué Cloud Computing II Lección 4 – El papel de Hadoop Tema 2: Primeros Pasos con AWS Lección 5 – Un poco de Historia Lección 6 – Primeros pasos por la consola Lección 7 – Un mar de servicios y regiones aws Lección 8 – Computación EC2 Lección 9 – Computación Lambda Lección 10 – Almacenamiento y Bases de Datos – Parte 1 Lección 11 – Almacenamiento y Bases de Datos – Parte 2 Lección 12 – Almacenamiento y Bases de Datos – Parte 3 Lección 13 – Redes Lección 14 – Otros servicios esenciales Lección 15 – Facturación y cuentas Lección 16 – La gratiuta Lección 17 – Todos para uno Lección 18 – Big Data en el ecosistema AWS Lección 19 – Demostración sobre IAM y EC2 Lección 20 – Demostración sobre CLI y S3 Lección 21 – Demostración sobre terminar recursos Ejercicios del Tema 2 Solución Ejercicios Tema 2 Tema 3: Ingesta de Datos: Lección 22 – Introducción Lección 23 – Migraciones de datos Lección 24 – Primeros pasos con Kinesis Lección 25 – Ingesta de datos con Kinesis Streams – Parte 1 Lección 26 – Ingesta de datos con Kinesis Streams – Parte 2 Lección 27 – Leyendo datos de Kinesis Streams – Parte 1 Lección 28 – Leyendo datos de Kinesis Streams – Parte 2 Lección 29 – IoT Lección 30 – SQS Lección 31 – Demostración de Kinesis Streams – Parte 1 Lección 32 – Demostración de Kinesis Streams – Parte 2 Lección 33 – Demostración de IoT – Parte 1 Lección 34 – Demostración de IoT – Parte 2 Ejercicios del Tema 3 Solución Ejercicios Tema 3 Primer Examen. Tema 4: Almacenamiento Lección 35 – Introducción Lección 36 – Aspectos avanzados y buenas prácticas con S3 Lección 37 – ¿Por qué data lake con S3? Lección 38 – Primeros pasos con DynamoDB Lección 40 – Profundizando en DynamoDB – Parte 1 Lección 39 – Profundizando en DynamoDB – Parte 2 Lección 41 – Buenas prácticas con DynamoDB Lección 42 – Introducción a Redshift Lección 43 – Profundizando en Redshift Lección 44 – Introducción a Amazon ElasticSearch Lección 45 – Primeros pasos con Kinesis firehose Lección 46 – Profundizando en Kinesis Firehose Lección 47 – Demostración de Kinesis Firehose – Parte 1 Lección 48 – Demostración de Kinesis Firehose – Parte 2 Solución Ejercicios Tema 4 Tema 5 Procesamiento y análisis de Datos Lección 49 – Introducción Lección 50 – Introducción a Apache Hadoop – Parte 1 Lección 51 – Introducción a Apache Hadoop – Parte 2 Lección 52 – Primeros pasos con EMR Lección 53 – Arquitectura de EMR Lección 54 – Configuración de EMR Lección 55 – Demostración sobre lanzar un clúster EMR – Parte 1 Lección 56 – Demostración sobre lanzar un clúster EMR – Parte 2 Lección 57 – Monitorización de EMR Lección 58 – Operaciones sobre EMR Lección 59 – Demostración sobre ejecutar MapReduce Lección 60 – Demostración del uso de Pig sobre EMR Lección 61 – Demostración del uso de Hive sobre EMR – Parte 1 Lección 62 – Demostración del uso de Hive sobre EMR – Parte 2 Lección 63 – Demostración de Spark sobre EMR Lección 64 – Primeros pasos con AWS Glue Lección 65 – Introduccion a AWS Athena Lección 66 – Orquestación con DataPipeline Lección 67 – Introdicción a Kinesis Analytics Lección 68 – Demostración de Kinesis Analytics con CloudFormation Ejercicios del Tema 5 Solución Ejercicios Tema 5 Tema 6 Visualización Lección 69 – Introducción Lección 70 – Alternativas Lección 71 – Introducción a AWS QuickSight – Parte 1 Lección 72 – Introducción a AWS QuickSight – Parte 2 Lección 73 – Demostración de AWS Glue – Athena – QuickSight – Parte 1 Lección 74 – Demostración de AWS Glue – Athena – QuickSight – Parte 2 Ejercicios del Tema 6 Solución Ejercicios Tema 6 Segundo examen Tema 7: Conclusiones Finales: Lección 75 – Buenas prácticas Lección 76 – Serless Lección 77 – Arquitecturas de referencia Lección 78 – Aún hay más Lección 79 – Despedida más
Otros cursos de esta academia
Programación Java 2017 orientado a Android
(Culture Lab)
Objetivos del curso: durante el curso conoceremos las principales funcionalidades de java desde cero en cuestiones relativas a objetos, clases, herencias componentes...
Curso de Seguridad Informática orientado a Empresas
(Culture Lab)
Ataque a paquete ms office... parte 3/2 lección 71: sistemas de detección de intrusos ids lección 72: funcionamiento de un ids... en general, todos aquellas personas...
Introducción a Big Data con MongoBD y Hadoop
(Culture Lab)
Saber qué proyectos pertenecientes al ecosistema hadoop utilizar para alcanzar la mejor solución para un problema dado... ser capaz de diseñar el modelo de datos...
Big Data con Apache Hadoop y Apache Spark
(Culture Lab)
Lección 29º formatos de comprensión de los datos lección 30º importación de los datos con apache sqoop lección 31º herramientas para el uso de apache sqoop lección...
Curso de Diseño Digital y modelado para Impresoras 3D
(Culture Lab)
Requisitos no es necesario disponer de ningún conocimiento previo en programación, ni en programas de diseño para realizar este curso...
Introducción a Machine Learning con Pandas y TensorFlow
(Culture Lab)
Conocer los alcances de machine learning y qué relación tiene con inteligencia artificial y deep learning... temario completo de este curso tema 1º introducción...
Curso de Big Data bonificable. solo empresas
(Culture Lab)
Aprenderás apache spark en detalle y serás capaz de desarrollar programas de análisis de datos con esta tecnología... temario completo de este curso 1...
PEDIR INFORMACIÓN